Post-stratification analysis
Arguments
- est_df
A
data.frame()
of stratified indicator estimates to get overall estimates of.est_df
should have a variable namedest
for the values of the indicator estimate, a variable namedstrata
for information on the stratification or grouping of the estimates, and a variable namedse
for the standard errors for the values of the indicator estimate. This is usually produced via a call toboot_bw_estimate()
.- pop_df
A
data.frame()
with at least two variables:strata
for the stratification/grouping information that matchesstrata
inest_df
andpop
for information on population for the givenstrata
.- strata
A character value of the variable name in
est_df
that corresponds to thestrata
values to match with values inpop_df
Value
A vector of values for the overall estimate, overall 95% lower
confidence limit, and overall 95% upper confidence limit for each of the
strata
in est_df
.
Examples
est_df <- boot_bw(
x = indicatorsHH, w = villageData, statistic = bootClassic,
params = "anc1", strata = "region", replicates = 9, parallel = TRUE
) |>
boot_bw_estimate()
#>
#> ── Resampling in parallel ──
#>
#> ℹ Setting up 3 parallel operations
#> ✔ Setting up 3 parallel operations [292ms]
#>
#> ℹ Resampling by region - 9 replicates in parallel
#> ✔ Resampling by region - 9 replicates in parallel [855ms]
#>
#> ℹ Tidying up resampling outputs
#> ✔ Tidying up resampling outputs [19ms]
#>
#> ℹ Closing 3 parallel operations
#> ✔ Closing 3 parallel operations [15ms]
#>
## Add population ----
pop_df <- somalia_population |>
subset(select = c(region, total))
names(pop_df) <- c("strata", "pop")
estimate_total(est_df, pop_df, strata = "region")
#> ✔ est_df has the appropriate/expected variables
#> ✔ pop_df has the appropriate/expected variables
#> strata indicator est lcl ucl se
#> 1 Overall anc1 0.4659361 0.3959141 0.5359582 0.001276314