Sample dataset from an impact evaluation study of a mother and child nutrition programme in Kassala State, Sudan. This dataset contains information from mother respondents.
Source:R/odkr.R
sampleData2.Rd
Sample dataset from an impact evaluation study of a mother and child nutrition programme in Kassala State, Sudan. This dataset contains information from mother respondents.
Format
A data frame with 16 columns and 50 rows:
wcount.wdata.women.wage
Mother's age
wcount.wdata.women.wmarried
Is mother married?
wcount.wdata.women.wpregnant
Is mother pregnant?
wcount.wdata.women.wedu1
Mother - number of years of formal education
wcount.wdata.women.wedu2
Mother - highest educational attainment
wcount.wdata.women.wanthro
Mother's middle upper arm circumference (mm)
wcount.wdata.women.screening
Has mother's MUAC and oedema been measured/tested in past month
wcount.wdata.wash.ws1
Source of drinking water
wcount.wdata.wash.ws2
Water treatment
wcount.wdata.wash.ws3
Sanitation facility
wcount.wdata.wash.ws4
Is sanitation facility shared with other households?
wcount.wdata.wash.ws5
Is sanitation facility used by public
wcount.wdata.wash.ws6
Sanitary disposal of child's faeces
wcount.wdata.wash.ws7
Episodes when handwashing is done
KEY
Parent data identifier
PARENT_KEY
Child data identifier
Examples
sampleData2
#> wcount.wdata.women.wage wcount.wdata.women.wmarried
#> 1 20 1
#> 2 35 1
#> 3 16 2
#> 4 30 1
#> 5 18 2
#> 6 25 1
#> 7 27 1
#> 8 48 1
#> 9 18 1
#> 10 16 2
#> 11 46 1
#> 12 38 1
#> 13 22 1
#> 14 28 1
#> 15 18 1
#> 16 NA NA
#> 17 16 1
#> 18 15 1
#> 19 16 1
#> 20 25 1
#> 21 35 1
#> 22 18 2
#> 23 30 1
#> 24 33 1
#> 25 18 2
#> 26 25 1
#> 27 25 1
#> 28 46 1
#> 29 40 1
#> 30 16 2
#> 31 19 1
#> 32 23 1
#> 33 31 1
#> 34 30 1
#> 35 25 1
#> 36 17 2
#> 37 30 1
#> 38 36 1
#> 39 27 1
#> 40 17 2
#> 41 16 2
#> 42 32 1
#> 43 19 1
#> 44 16 2
#> 45 15 2
#> 46 35 1
#> 47 15 2
#> 48 36 1
#> 49 38 1
#> 50 15 1
#> wcount.wdata.women.wpregnant wcount.wdata.women.wedu1
#> 1 2 3
#> 2 2 0
#> 3 2 5
#> 4 2 0
#> 5 2 8
#> 6 2 3
#> 7 2 0
#> 8 2 0
#> 9 1 0
#> 10 2 3
#> 11 2 0
#> 12 2 0
#> 13 2 4
#> 14 2 0
#> 15 2 4
#> 16 NA NA
#> 17 2 0
#> 18 2 0
#> 19 1 5
#> 20 2 0
#> 21 2 3
#> 22 2 11
#> 23 1 0
#> 24 2 3
#> 25 2 1
#> 26 2 0
#> 27 2 0
#> 28 2 0
#> 29 2 0
#> 30 2 7
#> 31 2 0
#> 32 2 0
#> 33 2 0
#> 34 2 3
#> 35 1 0
#> 36 2 4
#> 37 2 0
#> 38 2 1
#> 39 2 2
#> 40 2 2
#> 41 2 0
#> 42 1 0
#> 43 1 2
#> 44 2 4
#> 45 2 7
#> 46 2 0
#> 47 2 8
#> 48 2 7
#> 49 2 10
#> 50 2 0
#> wcount.wdata.women.wedu2 wcount.wdata.women.wanthro
#> 1 1 270
#> 2 9 235
#> 3 1 174
#> 4 9 269
#> 5 2 225
#> 6 1 128
#> 7 9 268
#> 8 9 210
#> 9 1 162
#> 10 1 211
#> 11 9 331
#> 12 9 335
#> 13 1 227
#> 14 9 258
#> 15 1 196
#> 16 NA NA
#> 17 9 181
#> 18 9 225
#> 19 1 220
#> 20 9 260
#> 21 1 243
#> 22 3 272
#> 23 9 189
#> 24 1 240
#> 25 1 235
#> 26 9 245
#> 27 9 287
#> 28 9 194
#> 29 9 233
#> 30 1 179
#> 31 9 182
#> 32 9 134
#> 33 9 248
#> 34 1 283
#> 35 9 245
#> 36 1 182
#> 37 9 220
#> 38 1 235
#> 39 9 205
#> 40 1 243
#> 41 9 189
#> 42 9 235
#> 43 1 219
#> 44 1 221
#> 45 1 225
#> 46 9 200
#> 47 2 203
#> 48 1 230
#> 49 3 304
#> 50 9 185
#> wcount.wdata.women.screening wcount.wdata.wash.ws1 wcount.wdata.wash.ws2
#> 1 2 13 2
#> 2 2 9 2 7
#> 3 2 12 7
#> 4 2 12 7
#> 5 2 13 7
#> 6 2 8 7
#> 7 2 8 7
#> 8 2 12 3
#> 9 2 12 7
#> 10 2 9 2 3 7
#> 11 2 13 2
#> 12 2 9 2 3 7
#> 13 2 8 1
#> 14 2 12 7
#> 15 2 12 3
#> 16 NA NA
#> 17 2 12 7
#> 18 2 8 7
#> 19 2 13 4
#> 20 2 13 7
#> 21 2 13 3
#> 22 2 13 7
#> 23 2 12 7
#> 24 1 13 1
#> 25 2 11 7
#> 26 2 9 2 3
#> 27 2 12 3
#> 28 2 9 7
#> 29 1 8 7
#> 30 2 12 7
#> 31 1 9 7
#> 32 2 9 7
#> 33 2 9 2 3
#> 34 2 13 7
#> 35 2 8 7
#> 36 2 12 7
#> 37 2 9 7
#> 38 2 10 7
#> 39 2 13 2
#> 40 2 12 3
#> 41 2 9 7
#> 42 1 8 7
#> 43 2 9 7
#> 44 2 12 7
#> 45 2 9 2 3 7
#> 46 2 12 3
#> 47 2 12 7
#> 48 2 13 3
#> 49 2 13 7
#> 50 2 9 7
#> wcount.wdata.wash.ws3 wcount.wdata.wash.ws4 wcount.wdata.wash.ws5
#> 1 12 NA NA
#> 2 1 1 2
#> 3 12 NA NA
#> 4 12 NA NA
#> 5 12 NA NA
#> 6 12 NA NA
#> 7 12 NA NA
#> 8 12 NA NA
#> 9 12 NA NA
#> 10 1 1 2
#> 11 12 NA NA
#> 12 1 1 2
#> 13 12 NA NA
#> 14 12 NA NA
#> 15 12 NA NA
#> 16 NA NA NA
#> 17 12 NA NA
#> 18 12 NA NA
#> 19 12 NA NA
#> 20 12 NA NA
#> 21 12 NA NA
#> 22 2 2 2
#> 23 12 NA NA
#> 24 1 1 1
#> 25 12 NA NA
#> 26 1 1 1
#> 27 12 NA NA
#> 28 12 NA NA
#> 29 12 NA NA
#> 30 2 2 2
#> 31 12 NA NA
#> 32 10 1 2
#> 33 2 1 1
#> 34 12 NA NA
#> 35 12 NA NA
#> 36 12 NA NA
#> 37 12 NA NA
#> 38 12 NA NA
#> 39 12 NA NA
#> 40 12 NA NA
#> 41 12 NA NA
#> 42 12 NA NA
#> 43 10 1 2
#> 44 12 NA NA
#> 45 1 2 2
#> 46 12 NA NA
#> 47 12 NA NA
#> 48 12 NA NA
#> 49 2 2 2
#> 50 12 NA NA
#> wcount.wdata.wash.ws6 wcount.wdata.wash.ws7 KEY PARENT_KEY
#> 1 NA 1 2 3 4 6 7 1 1
#> 2 9 1 2 3 7 8 2 2
#> 3 NA 1 2 3 7 3 3
#> 4 NA 1 2 3 4 5 6 7 8 4 4
#> 5 NA 1 2 8 5 5
#> 6 NA 1 2 3 5 6 6
#> 7 NA 1 2 3 6 7 8 7 7
#> 8 NA 1 2 3 8 8
#> 9 NA 1 2 3 7 8 9 9
#> 10 9 1 2 3 10 10
#> 11 NA 1 2 3 11 11
#> 12 1 1 2 3 7 12 12
#> 13 NA 1 2 3 13 13
#> 14 NA 1 2 3 4 6 7 8 14 14
#> 15 NA 1 2 3 15 15
#> 16 NA 16 16
#> 17 NA 1 2 3 7 8 17 17
#> 18 NA 1 2 3 7 8 18 18
#> 19 NA 1 2 3 7 19 19
#> 20 NA 1 2 3 5 20 20
#> 21 NA 1 2 3 6 7 21 21
#> 22 9 1 2 3 7 8 22 22
#> 23 NA 1 2 3 6 7 23 23
#> 24 1 1 2 3 5 6 7 8 24 24
#> 25 NA 1 2 3 5 6 25 25
#> 26 1 1 2 3 7 8 26 26
#> 27 NA 1 2 3 27 27
#> 28 NA 1 2 3 7 28 28
#> 29 NA 1 2 3 5 29 29
#> 30 9 1 2 3 7 30 30
#> 31 NA 1 2 4 7 31 31
#> 32 1 1 2 3 6 32 32
#> 33 7 1 2 3 8 33 33
#> 34 NA 1 2 3 7 34 34
#> 35 NA 1 2 3 7 8 35 35
#> 36 NA 1 2 3 7 8 36 36
#> 37 NA 1 2 3 7 37 37
#> 38 NA 1 3 5 38 38
#> 39 NA 1 2 3 4 6 7 39 39
#> 40 NA 1 2 3 40 40
#> 41 NA 1 2 3 7 41 41
#> 42 NA 1 2 3 5 42 42
#> 43 7 1 2 3 4 6 7 8 10 43 43
#> 44 NA 2 3 6 7 44 44
#> 45 9 1 2 3 4 5 6 7 8 10 45 45
#> 46 NA 1 2 3 46 46
#> 47 NA 1 2 3 7 8 47 47
#> 48 NA 1 2 3 5 7 48 48
#> 49 2 1 2 3 6 7 49 49
#> 50 NA 1 2 3 7 50 50