
Apply bootstrap to RAM-OP indicators using a PROBIT estimator.
Source:R/03-probitBoot.R
estimate_probit.RdApply bootstrap to RAM-OP indicators using a PROBIT estimator.
Usage
estimate_probit(
x,
w,
gam.stat = probit_gam,
sam.stat = probit_sam,
params = "MUAC",
outputColumns = params,
replicates = 399
)Arguments
- x
Indicators dataset produced by
create_op()with primary sampling unit (PSU) in column named "psu".- w
A data frame with primary sampling unit (PSU) in column named "psu" and survey weight (i.e. PSU population) in column named "pop".
- gam.stat
A function operating on data in
xto estimate GAM prevalence for older people. Fixed toprobit_gam().- sam.stat
A function operating on data in
xto estimate SAM prevalence for older people. Fixed toprobit_sam().- params
Parameters (named columns in
x) passed to the function specified instatistic; fixed to "MUAC" as indicator amenable to probit estimation.- outputColumns
Names of columns in output data frame.
- replicates
Number of bootstrap replicate case and non-case.
Value
A tibble::tibble() of boot estimates using PROBIT.
Examples
test <- estimate_probit(x = indicators.ALL, w = testPSU, replicates = 3)
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
test
#> # A tibble: 3 × 10
#> INDICATOR EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 GAM 0.0419 9.65e-3 4.57e-2 6.65e- 3 3.33e- 4 1.24e-2 0.0439
#> 2 MAM 0.0419 9.65e-3 4.57e-2 6.65e- 3 3.33e- 4 1.24e-2 0.0411
#> 3 SAM 0.0000187 9.33e-7 2.26e-5 3.25e-19 1.63e-20 1.08e-7 0.00282
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>