Skip to contents

The RAM-OP Workflow is summarised in the diagram below.

RAM-OP workflow

The oldr package provides functions to use for all steps after data collection. These functions were developed specifically for the data structure created by the EpiData or the Open Data Kit collection tools. The data structure produced by these collection tools is shown by the dataset testSVY included in the oldr package.

testSVY
#> # A tibble: 192 × 90
#>      ad2   psu    hh    id    d1    d2    d3    d4    d5    f1   f2a   f2b   f2c
#>    <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1     1   201     1     1     1    67     2     5     2     3     2     1     1
#>  2     1   201     2     1     1    74     1     2     2     3     2     1     1
#>  3     1   201     3     1     1    60     1     2     2     2     2     2     2
#>  4     1   201     3     2     1    60     2     2     2     3     2     2     1
#>  5     1   201     4     1     1    85     2     5     2     3     2     1     1
#>  6     1   201     5     1     2    86     1     5     1     4     2     1     1
#>  7     1   201     6     1     1    80     1     5     2     3     2     1     1
#>  8     1   201     6     2     1    60     2     5     2     3     2     2     1
#>  9     1   201     7     1     1    62     1     2     2     2     2     1     1
#> 10     1   201     8     1     1    72     2     5     2     2     2     1     1
#> # ℹ 182 more rows
#> # ℹ 77 more variables: f2d <int>, f2e <int>, f2f <int>, f2g <int>, f2h <int>,
#> #   f2i <int>, f2j <int>, f2k <int>, f2l <int>, f2m <int>, f2n <int>,
#> #   f2o <int>, f2p <int>, f2q <int>, f2r <int>, f2s <int>, f3 <int>, f4 <int>,
#> #   f5 <int>, f6 <int>, f7 <int>, a1 <int>, a2 <int>, a3 <int>, a4 <int>,
#> #   a5 <int>, a6 <int>, a7 <int>, a8 <int>, k6a <int>, k6b <int>, k6c <int>,
#> #   k6d <int>, k6e <int>, k6f <int>, ds1 <int>, ds2 <int>, ds3 <int>, …

Processing and recoding data

Once RAM-OP data is collected, it will need to be processed and recoded based on the definitions of the various indicators included in RAM-OP. The oldr package provides a suite functions to perform this processing and recoding. These functions and their syntax can be easily remembered as the create_op_ functions as their function names start with the create_ verb followed by the op_ label and then followed by an indicator or indicator set specific identifier or short name. Finally, an additional tag for male or female can be added to the main function to provide gender-specific outputs.

Currently, a standard RAM-OP can provide results for the 13 indicators or indicator sets for older people. The following table shows these indicators/indicator sets alongside the functions related to them:

Indicator / Indicator Set Related Functions
Demography and situation create_op_demo; create_op_demo_males; create_op_demo_females
Food intake create_op_food; create_op_food_males; create_op_food_females
Severe food insecurity create_op_hunger; create_op_hunger_males; create_op_hunger_females
Disability create_op_disability; create_op_disability_males; create_op_disability_females
Activities of daily living create_op_adl; create_op_adl_males; create_op_adl_females
Mental health and well-being create_op_mental; create_op_mental_males; create_op_mental_females
Dementia create_op_dementia; create_op_dementia_males; create_op_dementia_females
Health and health-seeking behaviour create_op_health; create_op_health_males; create_op_health_females
Sources of income create_op_income; create_op_income_males; create_op_income_females
Water, sanitation, and hygiene create_op_wash; create_op_wash_males; create_op_wash_females
Anthropometry and anthropometric screening coverage create_op_anthro; create_op_anthro_males; create_op_anthro_females
Visual impairment create_op_visual; create_op_visual_males; create_op_visual_females
Miscellaneous create_op_misc; create_op_misc_males; create_op_misc_females

A final function in the processing and recoding set - create_op - is provided to perform the processing and recoding of all indicators or indicator sets. This function allows for the specification of which indicators or indicator sets to process and recode which is useful for cases where not all the indicators or indicator sets have been collected or if only specific indicators or indicator sets need to be analysed or reported. This function also specifies whether a specific gender subset of the data is needed.

For a standard RAM-OP implementation, this step is performed in R as follows:

## Process and recode all standard RAM-OP indicators in the testSVY dataset
create_op(svy = testSVY)

which results in the following output:

#> # A tibble: 192 × 138
#>      psu  sex1  sex2 resp1 resp2 resp3 resp4   age ageGrp1 ageGrp2 ageGrp3
#>    <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>   <dbl>   <dbl>   <dbl>
#>  1   201     0     1     1     0     0     0    67       0       1       0
#>  2   201     1     0     1     0     0     0    74       0       0       1
#>  3   201     1     0     1     0     0     0    60       0       1       0
#>  4   201     0     1     1     0     0     0    60       0       1       0
#>  5   201     0     1     1     0     0     0    85       0       0       0
#>  6   201     1     0     0     1     0     0    86       0       0       0
#>  7   201     1     0     1     0     0     0    80       0       0       0
#>  8   201     0     1     1     0     0     0    60       0       1       0
#>  9   201     1     0     1     0     0     0    62       0       1       0
#> 10   201     0     1     1     0     0     0    72       0       0       1
#> # ℹ 182 more rows
#> # ℹ 127 more variables: ageGrp4 <dbl>, ageGrp5 <dbl>, marital1 <dbl>,
#> #   marital2 <dbl>, marital3 <dbl>, marital4 <dbl>, marital5 <dbl>,
#> #   marital6 <dbl>, alone <dbl>, MF <dbl>, DDS <dbl>, FG01 <dbl>, FG02 <dbl>,
#> #   FG03 <dbl>, FG04 <dbl>, FG05 <dbl>, FG06 <dbl>, FG07 <dbl>, FG08 <dbl>,
#> #   FG09 <dbl>, FG10 <dbl>, FG11 <dbl>, proteinRich <dbl>, pProtein <dbl>,
#> #   aProtein <dbl>, pVitA <dbl>, aVitA <dbl>, xVitA <dbl>, ironRich <dbl>, …

Estimating indicators

Once data has been processed and appropriate recoding for indicators has been performed, indicator estimates can now be calculated.

It is important to note that estimation procedures need to account for the sample design. All major statistical analysis software can do this (details vary). There are two things to note:

  • The RAM-OP sample is a two-stage sample. Subjects are sampled from a small number of primary sampling units (PSUs).

  • The RAM-OP sample is not prior weighted. This means that per-PSU sampling weights are needed. These are usually the populations of the PSU.

This sample design will need to be specified to statistical analysis software being used. If no weights are provided, then the analysis may produce estimates that place undue weight to observations from smaller communities with confidence intervals with lower than nominal coverage (i.e. they will be too narrow).

Blocked weighted bootstrap

The oldr package uses blocked weighted bootstrap estimation approach:

  • Blocked : The block corresponds to the PSU or cluster.

  • Weighted : The RAM-OP sampling procedure does not use population proportional sampling to weight the sample prior to data collection as is done with SMART type surveys. This means that a posterior weighting procedure is required. The standard RAM-OP software uses a “roulette wheel” algorithm to weight (i.e. by population) the selection probability of PSUs in bootstrap replicates.

A total of m PSUs are sampled with-replacement from the survey dataset where m is the number of PSUs in the survey sample. Individual records within each PSU are then sampled with-replacement. A total of n records are sampled with-replacement from each of the selected PSUs where n is the number of individual records in a selected PSU. The resulting collection of records replicates the original survey in terms of both sample design and sample size. A large number of replicate surveys are taken (the standard RAM-OP software uses r=399r = 399 replicate surveys but this can be changed). The required statistic (e.g. the mean of an indicator value) is applied to each replicate survey. The reported estimate consists of the 50th (point estimate), 2.5th (lower 95% confidence limit), and the 97.5th (upper 95% confidence limit) percentiles of the distribution of the statistic observed across all replicate surveys. The blocked weighted bootstrap procedure is outlined in the figure below.

Blocked weighted bootstrap

The principal advantages of using a bootstrap estimator are:

  • Bootstrap estimators work well with small sample sizes.

  • The method is non-parametric and uses empirical rather than theoretical distributions. There are no assumptions of things like normality to worry about.

  • The method allows estimation of the sampling distribution of almost any statistic using only simple computational methods.

PROBIT estimator

The prevalence of GAM, MAM, and SAM are estimated using a PROBIT estimator. This type of estimator provides better precision than a classic estimator at small sample sizes as discussed in the following literature:

World Health Organisation, Physical Status: The use and interpretation of anthropometry. Report of a WHO expert committee, WHO Technical Report Series 854, WHO, Geneva, 1995

Dale NM, Myatt M, Prudhon C, Briend, A, “Assessment of the PROBIT approach for estimating the prevalence of global, moderate and severe acute malnutrition from population surveys”, Public Health Nutrition, 1–6. https://doi.org/10.1017/s1368980012003345, 2012

Blanton CJ, Bilukha, OO, “The PROBIT approach in estimating the prevalence of wasting: revisiting bias and precision”, Emerging Themes in Epidemiology, 10(1), 2013, p. 8

An estimate of GAM prevalence can be made using a classic estimator:

prevalence=Number of respondents with MUAC < 210Total number of respondents \text{prevalence} ~ = ~ \frac{\text{Number of respondents with MUAC < 210}}{\text{Total number of respondents}}

On the other hand, the estimate of GAM prevalence made from the RAM-OP survey data is made using a PROBIT estimator. The PROBIT function is also known as the inverse cumulative distribution function. This function converts parameters of the distribution of an indicator (e.g. the mean and standard deviation of a normally distributed variable) into cumulative percentiles. This means that it is possible to use the normal PROBIT function with estimates of the mean and standard deviation of indicator values in a survey sample to predict (or estimate) the proportion of the population falling below a given threshold. For example, for data with a mean MUAC of 256 mm and a standard deviation of 28 mm the output of the normal PROBIT function for a threshold of 210 mm is 0.0502 meaning that 5.02% of the population are predicted (or estimated) to fall below the 210 mm threshold.

Both the classic and the PROBIT methods can be thought of as estimating area:

RAM-OP estimators

The principal advantage of the PROBIT approach is that the required sample size is usually smaller than that required to estimate prevalence with a given precision using the classic method.

The PROBIT method assumes that MUAC is a normally distributed variable. If this is not the case then the distribution of MUAC is transformed towards normality.

The prevalence of SAM is estimated in a similar way to GAM. The prevalence of MAM is estimated as the difference between the GAM and SAM prevalence estimates:

GAM prevalencê=GAM prevalencêSAM prevalencê \widehat{\text{GAM prevalence}} ~ = ~ \widehat{\text{GAM prevalence}} - \widehat{\text{SAM prevalence}}

Classic estimator

The function estimateClassic in oldr implements the blocked weighted bootstrap classic estimator of RAM-OP. This function uses the bootClassic statistic to estimate indicator values.

The estimateClassic function is used for all the standard RAM-OP indicators except for anthropometry. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform classic estimation on recoded data using appropriate weights provided by testPSU
classicDF <- estimate_classic(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 136 × 10
#>    INDICATOR EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>    <chr>       <dbl>   <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#>  1 resp1      0.859   0.794   0.880     0.803     0.743     0.835      0.849  
#>  2 resp2      0.0885  0.075   0.152     0.1       0.0308    0.125      0.123  
#>  3 resp3      0.0417  0.0219  0.0729    0.0658    0.0309    0.166      0.0169 
#>  4 resp4      0       0       0.0229    0.0132    0         0.0889     0.00826
#>  5 age       70.7    69.4    72.1      71.0      69.3      72.5       71.1    
#>  6 ageGrp1    0       0       0         0         0         0          0      
#>  7 ageGrp2    0.536   0.441   0.586     0.470     0.423     0.609      0.517  
#>  8 ageGrp3    0.229   0.181   0.328     0.325     0.211     0.380      0.218  
#>  9 ageGrp4    0.198   0.123   0.277     0.153     0.0890    0.268      0.272  
#> 10 ageGrp5    0.0365  0.0219  0.0573    0.0488    0.0236    0.0747     0.0391 
#> # ℹ 126 more rows
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

PROBIT estimator

The function estimateProbit in oldr implements the blocked weighted bootstrap PROBIT estimator of RAM-OP. This function uses the probit_GAM and the probit_SAM statistic to estimate indicator values.

The estimateProbit function is used for only the anthropometric indicators. The function is used as follows:

## Process and recode RAM-OP data (testSVY)
df <- create_op(svy = testSVY)

## Perform probit estimation on recoded data using appropriate weights provided by testPSU
probitDF <- estimate_probit(x = df, w = testPSU)

This results in (using limited replicates to reduce computing time):

#> # A tibble: 3 × 10
#>   INDICATOR  EST.ALL   LCL.ALL UCL.ALL EST.MALES LCL.MALES UCL.MALES EST.FEMALES
#>   <chr>        <dbl>     <dbl>   <dbl>     <dbl>     <dbl>     <dbl>       <dbl>
#> 1 GAM       0.0366     1.37e-2 0.0479   6.02e- 3  8.33e- 4  0.0115       0.0549 
#> 2 MAM       0.0326     1.36e-2 0.0478   5.84e- 3  7.71e- 4  0.0115       0.0505 
#> 3 SAM       0.000219   2.07e-6 0.00659  2.19e-10  2.59e-21  0.000160     0.00255
#> # ℹ 2 more variables: LCL.FEMALES <dbl>, UCL.FEMALES <dbl>

The two sets of estimates are then merged using the merge_op function as follows:

## Merge classicDF and probitDF
resultsDF <- merge_op(x = classicDF, y = probitDF)

resultsDF

which results in:

#> # A tibble: 139 × 13
#>    INDICATOR GROUP       LABEL TYPE  EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES
#>    <fct>     <fct>       <fct> <fct>   <dbl>   <dbl>   <dbl>     <dbl>     <dbl>
#>  1 resp1     Survey      Resp… Prop…  0.859   0.794   0.880     0.803     0.743 
#>  2 resp2     Survey      Resp… Prop…  0.0885  0.075   0.152     0.1       0.0308
#>  3 resp3     Survey      Resp… Prop…  0.0417  0.0219  0.0729    0.0658    0.0309
#>  4 resp4     Survey      Resp… Prop…  0       0       0.0229    0.0132    0     
#>  5 age       Demography… Mean… Mean  70.7    69.4    72.1      71.0      69.3   
#>  6 ageGrp1   Demography… Self… Prop…  0       0       0         0         0     
#>  7 ageGrp2   Demography… Self… Prop…  0.536   0.441   0.586     0.470     0.423 
#>  8 ageGrp3   Demography… Self… Prop…  0.229   0.181   0.328     0.325     0.211 
#>  9 ageGrp4   Demography… Self… Prop…  0.198   0.123   0.277     0.153     0.0890
#> 10 ageGrp5   Demography… Self… Prop…  0.0365  0.0219  0.0573    0.0488    0.0236
#> # ℹ 129 more rows
#> # ℹ 4 more variables: UCL.MALES <dbl>, EST.FEMALES <dbl>, LCL.FEMALES <dbl>,
#> #   UCL.FEMALES <dbl>

Creating charts

Once indicators has been estimated, the outputs can then be used to create relevant charts to visualise the results. A set of functions that start with the verb chart_op_ is provided followed by the indicator identifier to specify the type of indicator to visualise. The output of the function is a PNG file saved in the specified filename appended to the indicator identifier within the current working directory or saved in the specified filename appended to the indicator identifier in the specified directory path.

The following shows how to produce the chart for ADLs saved with filename test appended at the start inside a temporary directory:

chart_op_adl(x = create_op(testSVY), filename = file.path(tempdir(), "test"))
#> agg_png 
#>       2

The resulting PNG file can be found in the temporary directory

file.exists(path = file.path(tempdir(), "test.png"))
#> [1] FALSE

and will look something like this:

RAM-OP chart showing information on activities of daily living

Reporting estimates

Finally, estimates can be reported through report tables. The report_op_table function facilitates this through the following syntax:

report_op_table(estimates = resultsDF, filename = file.path(tempdir(), "TEST"))

The resulting CSV file is found in the temporary directory

file.exists(path = file.path(tempdir(), "TEST.csv"))
#> [1] FALSE

and will look something like this:

#>                                                                         X  X.1
#> 1                                                                  Survey     
#> 2                                                                             
#> 3                                                               INDICATOR TYPE
#> 4                                                    Respondent : SUBJECT    2
#> 5                                               Respondent : FAMILY CARER    2
#> 6                                                Respondent : OTHER CARER    2
#> 7                                                      Respondent : OTHER    2
#> 8                                                                             
#> 9                                                Demography and situation     
#> 10                                                                            
#> 11                                                              INDICATOR TYPE
#> 12                              Mean self-reported age of subject (years)    1
#> 13                              Self-reported age between 50 and 59 years    2
#> 14                              Self-reported age between 60 and 69 years    2
#> 15                              Self-reported age between 70 and 79 years    2
#> 16                              Self-reported age between 80 and 89 years    2
#> 17                                    Self-reported age 90 years or older    2
#> 18                                                             Sex : MALE    2
#> 19                                                           Sex : FEMALE    2
#> 20                                Marital status : SINGLE (NEVER MARRIED)    2
#> 21                                               Marital status : MARRIED    2
#> 22                                       Marital status : LIVING TOGETHER    2
#> 23                                              Marital status : DIVORCED    2
#> 24                                               Marital status : WIDOWED    2
#> 25                                                 Marital status : OTHER    2
#> 26                                                    Subject lives alone    2
#> 27                                                                            
#> 28                                                                   Diet     
#> 29                                                                            
#> 30                                                              INDICATOR TYPE
#> 31  Meal frequency (i.e. number of meals and snacks in previous 24 hours)    1
#> 32                          Dietary diversity (count from 11 food groups)    1
#> 33                                Consumed CEREALS (in previous 24 hours)    2
#> 34                         Consumed ROOTS / TUBERS (in previous 24 hours)    2
#> 35                    Consumed FRUITS / VEGETABLES (in previous 24 hours)    2
#> 36                                   Consumed MEAT (in previous 24 hours)    2
#> 37                                   Consumed EGGS (in previous 24 hours)    2
#> 38                                   Consumed FISH (in previous 24 hours)    2
#> 39                 Consumed LEGUMES / NUTS / SEEDS (in previous 24 hours)    2
#> 40                   Consumed MILK / MILK PRODUCTS (in previous 24 hours)    2
#> 41                                   Consumed FATS (in previous 24 hours)    2
#> 42                                 Consumed SUGARS (in previous 24 hours)    2
#> 43                                  Consumed OTHER (in previous 24 hours)    2
#> 44                                                                            
#> 45                                                              Nutrients     
#> 46                                                                            
#> 47                                                              INDICATOR TYPE
#> 48                                             PROTEIN rich foods in diet    2
#> 49                          Protein rich plant sources of protein in diet    2
#> 50                         Protein rich animal sources of protein in diet    2
#> 51                                     Plant sources of Vitamin A in diet    2
#> 52                                    Animal sources of Vitamin A in diet    2
#> 53                                                Any source of Vitamin A    2
#> 54                                                IRON rich foods in diet    2
#> 55                                             CALCIUM rich foods in diet    2
#> 56                                                ZINC rich foods in diet    2
#> 57                                          Vitamin B1 rich foods in diet    2
#> 58                                          Vitamin B2 rich foods in diet    2
#> 59                                          Vitamin B3 rich foods in diet    2
#> 60                                          Vitamin B6 rich foods in diet    2
#> 61                                         Vitamin B12 rich foods in diet    2
#> 62                     Vitamin B1 / B2 / B3 / B6 / B12 rich foods in diet    2
#> 63                                                                            
#> 64                                                          Food Security     
#> 65                                                                            
#> 66                                                              INDICATOR TYPE
#> 67                         Little or no hunger in household (HHS = 0 / 1)    2
#> 68                             Moderate hunger in household (HHS = 2 / 3)    2
#> 69                           Severe hunger in household (HHS = 4 / 5 / 6)    2
#> 70                                                                            
#> 71                                                        Disability (WG)     
#> 72                                                                            
#> 73                                                              INDICATOR TYPE
#> 74                                                     Vision : D0 : None    2
#> 75                                                      Vision : D1 : Any    2
#> 76                                       Vision : D2 : Moderate or severe    2
#> 77                                                   Vision : D3:  Severe    2
#> 78                                                    Hearing : D0 : None    2
#> 79                                                     Hearing : D1 : Any    2
#> 80                                      Hearing : D2 : Moderate or severe    2
#> 81                                                  Hearing : D3:  Severe    2
#> 82                                                   Mobility : D0 : None    2
#> 83                                                    Mobility : D1 : Any    2
#> 84                                     Mobility : D2 : Moderate or severe    2
#> 85                                                 Mobility : D3:  Severe    2
#> 86                                                Remembering : D0 : None    2
#> 87                                                 Remembering : D1 : Any    2
#> 88                                  Remembering : D2 : Moderate or severe    2
#> 89                                              Remembering : D3:  Severe    2
#> 90                                                  Self-care : D0 : None    2
#> 91                                                   Self-care : D1 : Any    2
#> 92                                    Self-care : D2 : Moderate or severe    2
#> 93                                                Self-care : D3:  Severe    2
#> 94                                              Communicating : D0 : None    2
#> 95                                               Communicating : D1 : Any    2
#> 96                                Communicating : D2 : Moderate or severe    2
#> 97                                            Communicating : D3:  Severe    2
#> 98                              No disability in Washington Group domains    2
#> 99                             At least 1 domain with any disability (P1)    2
#> 100             At least 1 domain with moderate or severe disability (P2)    2
#> 101                         At least 1 domain with severe disability (P3)    2
#> 102   Multiple disability : More than one domain with any disability (PM)    2
#> 103                                                                           
#> 104                                            Activities of daily living     
#> 105                                                                           
#> 106                                                             INDICATOR TYPE
#> 107                                                 Independent : Bathing    2
#> 108                                                Independent : Dressing    2
#> 109                                               Independent : Toileting    2
#> 110                                 Independent : Transferring (mobility)    2
#> 111                                              Independent : Continence    2
#> 112                                                 Independent : Feeding    2
#> 113                                                        Katz ADL score    1
#> 114                                    Independent (Katz ADL score = 5/6)    2
#> 115                             Partial dependency (Katz ADL score = 3/4)    2
#> 116                            Severe dependency (Katz ADL score = 0/1/2)    2
#> 117      Subject has someone to help them with activities of daily living    2
#> 118                     Subject has ADL needs (ADL < 6) but has no helper    2
#> 119                                                                           
#> 120                                                         Mental health     
#> 121                                                                           
#> 122                                                             INDICATOR TYPE
#> 123                                       K6 psychological distress score    1
#> 124                              Serious psychological distress (K6 > 12)    2
#> 125                                Probable dementia by brief CSID screen    2
#> 126                                                                           
#> 127                                                                Health     
#> 128                                                                           
#> 129                                                             INDICATOR TYPE
#> 130                        Long term disease requiring regular medication    2
#> 131   Takes medication for long term disease requiring regular medication    2
#> 132           Not taking drugs for long term disease : NO DRUGS AVAILABLE    2
#> 133     Not taking drugs for long term disease : TOO EXPENSIVE / NO MONEY    2
#> 134     Not taking drugs for long term disease : TOO OLD TO LOOK FOR CARE    2
#> 135  Not taking drugs for long term disease : USE OF TRADITIONAL MEDICINE    2
#> 136             Not taking drugs for long term disease : DRUGS DON'T HELP    2
#> 137            Not taking drugs for long term disease : NO-ONE TO HELP ME    2
#> 138                      Not taking drugs for long term disease : NO NEED    2
#> 139                        Not taking drugs for long term disease : OTHER    2
#> 140              Not taking drugs for long term disease : NO REASON GIVEN    2
#> 141                         Recent illness (i.e. in the previous 2 weeks)    2
#> 142                                      Accessed care for recent illness    2
#> 143            Not accessing care for recent illness : NO DRUGS AVAILABLE    2
#> 144      Not accessing care for recent illness : TOO EXPENSIVE / NO MONEY    2
#> 145      Not accessing care for recent illness : TOO OLD TO LOOK FOR CARE    2
#> 146   Not accessing care for recent illness : USE OF TRADITIONAL MEDICINE    2
#> 147              Not accessing care for recent illness : DRUGS DON'T HELP    2
#> 148             Not accessing care for recent illness : NO-ONE TO HELP ME    2
#> 149                       Not accessing care for recent illness : NO NEED    2
#> 150                         Not accessing care for recent illness : OTHER    2
#> 151               Not accessing care for recent illness : NO REASON GIVEN    2
#> 152                     Bilateral pitting oedema (may not be nutritional)    2
#> 153       Visual impairment (visual acuity < 6 / 12) by tumbling E method    2
#> 154                                   Problems chewing food (self-report)    2
#> 155                                                                           
#> 156                                                                Income     
#> 157                                                                           
#> 158                                                             INDICATOR TYPE
#> 159                                       Has a personal source of income    2
#> 160                  Source of income : Agriculture / fishing / livestock    2
#> 161                                     Source of income : Wages / salary    2
#> 162                   Source of income : Sale of charcoal / bricks / etc.    2
#> 163                      Source of income : Trading (e.g. market or shop)    2
#> 164                                        Source of income : Investments    2
#> 165                 Source of income : Spending savings / sales of assets    2
#> 166                                            Source of income : Charity    2
#> 167          Source of income : Cash transfer / social security / welfare    2
#> 168                          Source of income : Other source(s) of income    2
#> 169                                                                           
#> 170                                                                  WASH     
#> 171                                                                           
#> 172                                                             INDICATOR TYPE
#> 173                                     Improved source of drinking water    2
#> 174                                                   Safe drinking water    2
#> 175                                          Improved sanitation facility    2
#> 176                               Improved non-shared sanitation facility    2
#> 177                                                                           
#> 178                                                                Relief     
#> 179                                                                           
#> 180                                                             INDICATOR TYPE
#> 181                                  Previously screened (MUAC or oedema)    2
#> 182                                 Anyone in household receives a ration    2
#> 183                      Received non-food relief items in previous month    2
#> 184                                                                           
#> 185                                                         Anthropometry     
#> 186                                                                           
#> 187                                                             INDICATOR TYPE
#> 188                                       Global acute malnutrition : GAM    2
#> 189                                     Moderate acute malnutrition : MAM    2
#> 190                                       Severe acute malnutrition : SAM    2
#>         X.2     X.3     X.4     X.5     X.6     X.7     X.8     X.9    X.10
#> 1                                                                          
#> 2       ALL                   MALES                 FEMALES                
#> 3       EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 4    0.8594  0.7938  0.8802  0.8026  0.7433  0.8345  0.8487  0.7862  0.8832
#> 5    0.0885  0.0750  0.1521  0.1000  0.0308  0.1252  0.1228  0.0874  0.1868
#> 6    0.0417  0.0219  0.0729  0.0658  0.0309  0.1662  0.0169  0.0079  0.0357
#> 7    0.0000  0.0000  0.0229  0.0132  0.0000  0.0889  0.0083  0.0000  0.0169
#> 8                                                                          
#> 9                                                                          
#> 10      ALL                   MALES                 FEMALES                
#> 11      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 12  70.7396 69.4344 72.0948 71.0263 69.3453 72.5406 71.1102 70.0183 73.5077
#> 13   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 14   0.5365  0.4406  0.5865  0.4699  0.4235  0.6090  0.5169  0.3833  0.5868
#> 15   0.2292  0.1813  0.3281  0.3253  0.2114  0.3802  0.2185  0.1430  0.3178
#> 16   0.1979  0.1229  0.2771  0.1529  0.0890  0.2677  0.2719  0.1293  0.3135
#> 17   0.0365  0.0219  0.0573  0.0488  0.0236  0.0747  0.0391  0.0000  0.0710
#> 18   0.3958  0.3646  0.4990  1.0000  1.0000  1.0000  0.0000  0.0000  0.0000
#> 19   0.6042  0.5010  0.6354  0.0000  0.0000  0.0000  1.0000  1.0000  1.0000
#> 20   0.0260  0.0083  0.0531  0.0122  0.0000  0.0379  0.0357  0.0051  0.0643
#> 21   0.3333  0.2615  0.3844  0.5570  0.4076  0.6531  0.1406  0.0971  0.1984
#> 22   0.0938  0.0688  0.1708  0.1579  0.1216  0.2110  0.0702  0.0284  0.0924
#> 23   0.0781  0.0521  0.1104  0.0750  0.0191  0.2002  0.0427  0.0252  0.0999
#> 24   0.4583  0.3781  0.5302  0.2000  0.1110  0.2431  0.7143  0.6003  0.7555
#> 25   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 26   0.1458  0.1156  0.2042  0.1410  0.0518  0.2921  0.1026  0.0756  0.1670
#> 27                                                                         
#> 28                                                                         
#> 29      ALL                   MALES                 FEMALES                
#> 30      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 31   2.5729  2.4573  2.7437  2.6471  2.4395  2.7211  2.6404  2.5275  2.7735
#> 32   4.4948  4.3302  4.8615  4.5244  4.1114  4.8879  4.8120  4.5795  4.9771
#> 33   0.8958  0.8562  0.9521  0.9390  0.8848  0.9623  0.9298  0.9114  0.9694
#> 34   0.5312  0.4531  0.6042  0.5263  0.3676  0.6400  0.6033  0.5228  0.6408
#> 35   0.5677  0.5240  0.6125  0.5882  0.4545  0.6763  0.5847  0.5341  0.6923
#> 36   0.0573  0.0302  0.1052  0.0506  0.0000  0.1027  0.0938  0.0456  0.1303
#> 37   0.0312  0.0167  0.0469  0.0441  0.0025  0.0773  0.0085  0.0016  0.0338
#> 38   0.3490  0.2854  0.3885  0.4359  0.3004  0.5474  0.3125  0.2244  0.3903
#> 39   0.3958  0.3542  0.4740  0.3676  0.2646  0.4686  0.4474  0.3556  0.5361
#> 40   0.0156  0.0052  0.0510  0.0000  0.0000  0.0124  0.0413  0.0185  0.0887
#> 41   0.2188  0.1458  0.2469  0.2805  0.1629  0.3337  0.2308  0.1870  0.3009
#> 42   0.4635  0.4062  0.5750  0.4265  0.3123  0.4927  0.5546  0.4545  0.6525
#> 43   0.9688  0.9302  0.9833  0.9868  0.9055  1.0000  0.9669  0.9262  0.9966
#> 44                                                                         
#> 45                                                                         
#> 46      ALL                   MALES                 FEMALES                
#> 47      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 48   0.4688  0.4146  0.5260  0.4096  0.3447  0.4924  0.5263  0.4515  0.5916
#> 49   0.3958  0.3542  0.4740  0.3676  0.2646  0.4686  0.4474  0.3556  0.5361
#> 50   0.0990  0.0896  0.1927  0.0759  0.0288  0.1814  0.1491  0.0987  0.2133
#> 51   0.6302  0.5563  0.6583  0.6500  0.4940  0.6964  0.6562  0.5888  0.7541
#> 52   0.0469  0.0365  0.0917  0.0441  0.0050  0.0817  0.0526  0.0286  0.0940
#> 53   0.6458  0.5677  0.6698  0.6625  0.4987  0.7365  0.6838  0.6162  0.7591
#> 54   0.6979  0.6490  0.7073  0.6026  0.5486  0.7458  0.7143  0.6523  0.8037
#> 55   0.0156  0.0052  0.0510  0.0000  0.0000  0.0124  0.0413  0.0185  0.0887
#> 56   0.6198  0.5760  0.6729  0.6447  0.5228  0.7112  0.6094  0.5494  0.6951
#> 57   0.6615  0.6219  0.6958  0.6709  0.5781  0.7112  0.6696  0.5741  0.7481
#> 58   0.8073  0.7823  0.8729  0.7439  0.6786  0.8884  0.8762  0.8373  0.9102
#> 59   0.6198  0.5760  0.6729  0.6447  0.5228  0.7112  0.6094  0.5494  0.6951
#> 60   0.8490  0.8198  0.9094  0.8659  0.7745  0.9242  0.8992  0.8390  0.9355
#> 61   0.4010  0.3708  0.4500  0.4853  0.3476  0.6211  0.4141  0.2732  0.4476
#> 62   0.3958  0.3646  0.4448  0.4853  0.3406  0.5895  0.4018  0.2631  0.4277
#> 63                                                                         
#> 64                                                                         
#> 65      ALL                   MALES                 FEMALES                
#> 66      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 67   0.7865  0.7188  0.8260  0.7179  0.6415  0.8747  0.7712  0.7046  0.8481
#> 68   0.1615  0.1187  0.2333  0.2368  0.1029  0.3144  0.1429  0.0814  0.2141
#> 69   0.0260  0.0115  0.0448  0.0294  0.0144  0.0647  0.0248  0.0017  0.0756
#> 70                                                                         
#> 71                                                                         
#> 72      ALL                   MALES                 FEMALES                
#> 73      EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 74   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 75   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 76   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 77   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 78   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 79   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 80   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 81   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 82   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 83   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 84   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 85   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 86   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 87   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 88   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 89   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 90   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 91   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 92   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 93   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 94   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 95   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 96   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 97   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 98   1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
#> 99   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 100  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 101  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 102  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 103                                                                        
#> 104                                                                        
#> 105     ALL                   MALES                 FEMALES                
#> 106     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 107  0.9688  0.9375  0.9938  0.9706  0.9167  0.9877  0.9752  0.9440  1.0000
#> 108  0.9844  0.9740  0.9990  0.9737  0.9353  1.0000  0.9922  0.9848  1.0000
#> 109  0.9844  0.9740  0.9990  0.9737  0.9353  1.0000  0.9922  0.9848  1.0000
#> 110  0.9740  0.9146  0.9938  0.9647  0.9353  0.9971  0.9504  0.8986  0.9950
#> 111  0.7188  0.6333  0.7833  0.7632  0.6755  0.8533  0.7227  0.6424  0.7762
#> 112  0.9948  0.9896  1.0000  0.9872  0.9658  1.0000  1.0000  1.0000  1.0000
#> 113  5.6510  5.4604  5.7146  5.6316  5.4584  5.7720  5.6161  5.5344  5.7048
#> 114  0.9844  0.9333  0.9938  0.9737  0.9353  1.0000  0.9748  0.9424  0.9983
#> 115  0.0052  0.0010  0.0552  0.0000  0.0000  0.0000  0.0252  0.0017  0.0576
#> 116  0.0104  0.0010  0.0250  0.0263  0.0000  0.0647  0.0000  0.0000  0.0000
#> 117  0.5781  0.4812  0.6688  0.6410  0.4242  0.7277  0.6581  0.5944  0.7105
#> 118  0.1146  0.0906  0.1875  0.1316  0.0610  0.2410  0.0762  0.0231  0.0957
#> 119                                                                        
#> 120                                                                        
#> 121     ALL                   MALES                 FEMALES                
#> 122     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 123 11.9062 11.3719 13.1740 11.9103  9.1188 13.3188 12.6050 11.5305 13.0945
#> 124  0.4583  0.4260  0.5896  0.4412  0.3105  0.6276  0.4911  0.4495  0.5702
#> 125  0.1979  0.1219  0.2427  0.1842  0.0961  0.3161  0.2544  0.1984  0.3079
#> 126                                                                        
#> 127                                                                        
#> 128     ALL                   MALES                 FEMALES                
#> 129     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 130  0.4323  0.3740  0.4885  0.3684  0.2869  0.4337  0.4766  0.4217  0.5227
#> 131  0.7419  0.7069  0.7956  0.6765  0.4006  0.8244  0.8421  0.6133  0.9234
#> 132  0.1250  0.0087  0.2605  0.2000  0.0000  0.5500  0.1111  0.0000  0.2333
#> 133  0.3158  0.2111  0.6551  0.2000  0.1476  0.4222  0.4286  0.0667  0.9111
#> 134  0.1000  0.0429  0.2626  0.0000  0.0000  0.0000  0.2400  0.0000  0.8857
#> 135  0.1429  0.0087  0.2605  0.2727  0.0250  0.5429  0.0000  0.0000  0.0000
#> 136  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 137  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 138  0.0500  0.0000  0.1721  0.0000  0.0000  0.0000  0.0800  0.0000  0.2444
#> 139  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 140  0.1364  0.0724  0.3400  0.2000  0.1286  0.4229  0.0000  0.0000  0.4000
#> 141  0.8646  0.8240  0.8906  0.8816  0.7814  0.9213  0.8843  0.8165  0.9444
#> 142  0.8217  0.7945  0.8573  0.7887  0.7109  0.8304  0.8454  0.7938  0.9348
#> 143  0.0435  0.0000  0.1688  0.0667  0.0000  0.2906  0.1000  0.0000  0.1788
#> 144  0.8485  0.6408  0.9806  0.8667  0.6476  0.9867  0.8421  0.7138  0.9285
#> 145  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 146  0.0645  0.0000  0.1250  0.0667  0.0000  0.3176  0.0000  0.0000  0.0000
#> 147  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 148  0.0323  0.0000  0.1376  0.0000  0.0000  0.0000  0.0526  0.0000  0.1908
#> 149  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 150  0.0000  0.0000  0.0859  0.0000  0.0000  0.0000  0.0000  0.0000  0.1231
#> 151  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
#> 152  0.0104  0.0062  0.0469  0.0132  0.0000  0.0486  0.0391  0.0185  0.0696
#> 153  0.3750  0.3187  0.5135  0.4737  0.4088  0.5978  0.3361  0.2672  0.5349
#> 154  0.2708  0.2198  0.3438  0.2500  0.1565  0.2988  0.2719  0.2055  0.4309
#> 155                                                                        
#> 156                                                                        
#> 157     ALL                   MALES                 FEMALES                
#> 158     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 159  0.5833  0.5188  0.6354  0.6154  0.5609  0.7632  0.4831  0.4530  0.5779
#> 160  0.3698  0.3281  0.5146  0.4737  0.3924  0.6205  0.2727  0.2004  0.3433
#> 161  0.1250  0.0323  0.1854  0.2278  0.1046  0.3168  0.0439  0.0085  0.0744
#> 162  0.0417  0.0115  0.0563  0.0506  0.0191  0.0922  0.0089  0.0000  0.0280
#> 163  0.0521  0.0198  0.0760  0.0250  0.0000  0.0550  0.0702  0.0474  0.1214
#> 164  0.0052  0.0000  0.0156  0.0000  0.0000  0.0000  0.0000  0.0000  0.0247
#> 165  0.0156  0.0000  0.0448  0.0395  0.0000  0.0635  0.0000  0.0000  0.0000
#> 166  0.0104  0.0052  0.0292  0.0241  0.0000  0.0455  0.0179  0.0000  0.0303
#> 167  0.3229  0.2885  0.3771  0.2692  0.2086  0.3951  0.3238  0.2967  0.4420
#> 168  0.0052  0.0000  0.0250  0.0127  0.0000  0.0672  0.0000  0.0000  0.0174
#> 169                                                                        
#> 170                                                                        
#> 171     ALL                   MALES                 FEMALES                
#> 172     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 173  0.5990  0.5625  0.6510  0.6316  0.5553  0.6853  0.6102  0.5560  0.6614
#> 174  0.6979  0.6177  0.7354  0.6951  0.6424  0.7304  0.7656  0.7071  0.8245
#> 175  0.2552  0.1948  0.2969  0.2500  0.1651  0.5210  0.2190  0.1392  0.2960
#> 176  0.2344  0.1896  0.2917  0.2500  0.1621  0.5017  0.1983  0.1324  0.2920
#> 177                                                                        
#> 178                                                                        
#> 179     ALL                   MALES                 FEMALES                
#> 180     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 181  0.0365  0.0208  0.0656  0.0263  0.0026  0.0662  0.0424  0.0168  0.0568
#> 182  0.0521  0.0271  0.0729  0.0385  0.0129  0.0773  0.0504  0.0110  0.0703
#> 183  0.0365  0.0042  0.0552  0.0253  0.0000  0.0661  0.0088  0.0000  0.0629
#> 184                                                                        
#> 185                                                                        
#> 186     ALL                   MALES                 FEMALES                
#> 187     EST     LCL     UCL     EST     LCL     UCL     EST     LCL     UCL
#> 188  0.0366  0.0137  0.0479  0.0060  0.0008  0.0115  0.0549  0.0228  0.0646
#> 189  0.0326  0.0136  0.0478  0.0058  0.0008  0.0115  0.0505  0.0194  0.0608
#> 190  0.0002  0.0000  0.0066  0.0000  0.0000  0.0002  0.0026  0.0000  0.0091

The RAM-OP workflow in R using pipe operators

The oldr package functions were designed in such a way that they can be piped to each other to provide the desired output. Below we use the base R pipe operator |>.

Piped operation to get output estimates table

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_table(filename = file.path(tempdir(), "TEST"))

This results in a CSV file TEST.report.csv in the temporary directory

file.exists(file.path(tempdir(), "TEST.report.csv"))
#> [1] TRUE

with the following structure:

#>                                                                         X  X.1
#> 1                                                                  Survey     
#> 2                                                                             
#> 3                                                               INDICATOR TYPE
#> 4                                                    Respondent : SUBJECT    2
#> 5                                               Respondent : FAMILY CARER    2
#> 6                                                Respondent : OTHER CARER    2
#> 7                                                      Respondent : OTHER    2
#> 8                                                                             
#> 9                                                Demography and situation     
#> 10                                                                            
#> 11                                                              INDICATOR TYPE
#> 12                              Mean self-reported age of subject (years)    1
#> 13                              Self-reported age between 50 and 59 years    2
#> 14                              Self-reported age between 60 and 69 years    2
#> 15                              Self-reported age between 70 and 79 years    2
#> 16                              Self-reported age between 80 and 89 years    2
#> 17                                    Self-reported age 90 years or older    2
#> 18                                                             Sex : MALE    2
#> 19                                                           Sex : FEMALE    2
#> 20                                Marital status : SINGLE (NEVER MARRIED)    2
#> 21                                               Marital status : MARRIED    2
#> 22                                       Marital status : LIVING TOGETHER    2
#> 23                                              Marital status : DIVORCED    2
#> 24                                               Marital status : WIDOWED    2
#> 25                                                 Marital status : OTHER    2
#> 26                                                    Subject lives alone    2
#> 27                                                                            
#> 28                                                                   Diet     
#> 29                                                                            
#> 30                                                              INDICATOR TYPE
#> 31  Meal frequency (i.e. number of meals and snacks in previous 24 hours)    1
#> 32                          Dietary diversity (count from 11 food groups)    1
#> 33                                Consumed CEREALS (in previous 24 hours)    2
#> 34                         Consumed ROOTS / TUBERS (in previous 24 hours)    2
#> 35                    Consumed FRUITS / VEGETABLES (in previous 24 hours)    2
#> 36                                   Consumed MEAT (in previous 24 hours)    2
#> 37                                   Consumed EGGS (in previous 24 hours)    2
#> 38                                   Consumed FISH (in previous 24 hours)    2
#> 39                 Consumed LEGUMES / NUTS / SEEDS (in previous 24 hours)    2
#> 40                   Consumed MILK / MILK PRODUCTS (in previous 24 hours)    2
#> 41                                   Consumed FATS (in previous 24 hours)    2
#> 42                                 Consumed SUGARS (in previous 24 hours)    2
#> 43                                  Consumed OTHER (in previous 24 hours)    2
#> 44                                                                            
#> 45                                                              Nutrients     
#> 46                                                                            
#> 47                                                              INDICATOR TYPE
#> 48                                             PROTEIN rich foods in diet    2
#> 49                          Protein rich plant sources of protein in diet    2
#> 50                         Protein rich animal sources of protein in diet    2
#> 51                                     Plant sources of Vitamin A in diet    2
#> 52                                    Animal sources of Vitamin A in diet    2
#> 53                                                Any source of Vitamin A    2
#> 54                                                IRON rich foods in diet    2
#> 55                                             CALCIUM rich foods in diet    2
#> 56                                                ZINC rich foods in diet    2
#> 57                                          Vitamin B1 rich foods in diet    2
#> 58                                          Vitamin B2 rich foods in diet    2
#> 59                                          Vitamin B3 rich foods in diet    2
#> 60                                          Vitamin B6 rich foods in diet    2
#> 61                                         Vitamin B12 rich foods in diet    2
#> 62                     Vitamin B1 / B2 / B3 / B6 / B12 rich foods in diet    2
#> 63                                                                            
#> 64                                                          Food Security     
#> 65                                                                            
#> 66                                                              INDICATOR TYPE
#> 67                         Little or no hunger in household (HHS = 0 / 1)    2
#> 68                             Moderate hunger in household (HHS = 2 / 3)    2
#> 69                           Severe hunger in household (HHS = 4 / 5 / 6)    2
#> 70                                                                            
#> 71                                                        Disability (WG)     
#> 72                                                                            
#> 73                                                              INDICATOR TYPE
#> 74                                                     Vision : D0 : None    2
#> 75                                                      Vision : D1 : Any    2
#> 76                                       Vision : D2 : Moderate or severe    2
#> 77                                                   Vision : D3:  Severe    2
#> 78                                                    Hearing : D0 : None    2
#> 79                                                     Hearing : D1 : Any    2
#> 80                                      Hearing : D2 : Moderate or severe    2
#> 81                                                  Hearing : D3:  Severe    2
#> 82                                                   Mobility : D0 : None    2
#> 83                                                    Mobility : D1 : Any    2
#> 84                                     Mobility : D2 : Moderate or severe    2
#> 85                                                 Mobility : D3:  Severe    2
#> 86                                                Remembering : D0 : None    2
#> 87                                                 Remembering : D1 : Any    2
#> 88                                  Remembering : D2 : Moderate or severe    2
#> 89                                              Remembering : D3:  Severe    2
#> 90                                                  Self-care : D0 : None    2
#> 91                                                   Self-care : D1 : Any    2
#> 92                                    Self-care : D2 : Moderate or severe    2
#> 93                                                Self-care : D3:  Severe    2
#> 94                                              Communicating : D0 : None    2
#> 95                                               Communicating : D1 : Any    2
#> 96                                Communicating : D2 : Moderate or severe    2
#> 97                                            Communicating : D3:  Severe    2
#> 98                              No disability in Washington Group domains    2
#> 99                             At least 1 domain with any disability (P1)    2
#> 100             At least 1 domain with moderate or severe disability (P2)    2
#> 101                         At least 1 domain with severe disability (P3)    2
#> 102   Multiple disability : More than one domain with any disability (PM)    2
#> 103                                                                           
#> 104                                            Activities of daily living     
#> 105                                                                           
#> 106                                                             INDICATOR TYPE
#> 107                                                 Independent : Bathing    2
#> 108                                                Independent : Dressing    2
#> 109                                               Independent : Toileting    2
#> 110                                 Independent : Transferring (mobility)    2
#> 111                                              Independent : Continence    2
#> 112                                                 Independent : Feeding    2
#> 113                                                        Katz ADL score    1
#> 114                                    Independent (Katz ADL score = 5/6)    2
#> 115                             Partial dependency (Katz ADL score = 3/4)    2
#> 116                            Severe dependency (Katz ADL score = 0/1/2)    2
#> 117      Subject has someone to help them with activities of daily living    2
#> 118                     Subject has ADL needs (ADL < 6) but has no helper    2
#> 119                                                                           
#> 120                                                         Mental health     
#> 121                                                                           
#> 122                                                             INDICATOR TYPE
#> 123                                       K6 psychological distress score    1
#> 124                              Serious psychological distress (K6 > 12)    2
#> 125                                Probable dementia by brief CSID screen    2
#> 126                                                                           
#> 127                                                                Health     
#> 128                                                                           
#> 129                                                             INDICATOR TYPE
#> 130                        Long term disease requiring regular medication    2
#> 131   Takes medication for long term disease requiring regular medication    2
#> 132           Not taking drugs for long term disease : NO DRUGS AVAILABLE    2
#> 133     Not taking drugs for long term disease : TOO EXPENSIVE / NO MONEY    2
#> 134     Not taking drugs for long term disease : TOO OLD TO LOOK FOR CARE    2
#> 135  Not taking drugs for long term disease : USE OF TRADITIONAL MEDICINE    2
#> 136             Not taking drugs for long term disease : DRUGS DON'T HELP    2
#> 137            Not taking drugs for long term disease : NO-ONE TO HELP ME    2
#> 138                      Not taking drugs for long term disease : NO NEED    2
#> 139                        Not taking drugs for long term disease : OTHER    2
#> 140              Not taking drugs for long term disease : NO REASON GIVEN    2
#> 141                         Recent illness (i.e. in the previous 2 weeks)    2
#> 142                                      Accessed care for recent illness    2
#> 143            Not accessing care for recent illness : NO DRUGS AVAILABLE    2
#> 144      Not accessing care for recent illness : TOO EXPENSIVE / NO MONEY    2
#> 145      Not accessing care for recent illness : TOO OLD TO LOOK FOR CARE    2
#> 146   Not accessing care for recent illness : USE OF TRADITIONAL MEDICINE    2
#> 147              Not accessing care for recent illness : DRUGS DON'T HELP    2
#> 148             Not accessing care for recent illness : NO-ONE TO HELP ME    2
#> 149                       Not accessing care for recent illness : NO NEED    2
#> 150                         Not accessing care for recent illness : OTHER    2
#> 151               Not accessing care for recent illness : NO REASON GIVEN    2
#> 152                     Bilateral pitting oedema (may not be nutritional)    2
#> 153       Visual impairment (visual acuity < 6 / 12) by tumbling E method    2
#> 154                                   Problems chewing food (self-report)    2
#> 155                                                                           
#> 156                                                                Income     
#> 157                                                                           
#> 158                                                             INDICATOR TYPE
#> 159                                       Has a personal source of income    2
#> 160                  Source of income : Agriculture / fishing / livestock    2
#> 161                                     Source of income : Wages / salary    2
#> 162                   Source of income : Sale of charcoal / bricks / etc.    2
#> 163                      Source of income : Trading (e.g. market or shop)    2
#> 164                                        Source of income : Investments    2
#> 165                 Source of income : Spending savings / sales of assets    2
#> 166                                            Source of income : Charity    2
#> 167          Source of income : Cash transfer / social security / welfare    2
#> 168                          Source of income : Other source(s) of income    2
#> 169                                                                           
#> 170                                                                  WASH     
#> 171                                                                           
#> 172                                                             INDICATOR TYPE
#> 173                                     Improved source of drinking water    2
#> 174                                                   Safe drinking water    2
#> 175                                          Improved sanitation facility    2
#> 176                               Improved non-shared sanitation facility    2
#> 177                                                                           
#> 178                                                                Relief     
#> 179                                                                           
#> 180                                                             INDICATOR TYPE
#> 181                                  Previously screened (MUAC or oedema)    2
#> 182                                 Anyone in household receives a ration    2
#> 183                      Received non-food relief items in previous month    2
#> 184                                                                           
#> 185                                                         Anthropometry     
#> 186                                                                           
#> 187                                                             INDICATOR TYPE
#> 188                                       Global acute malnutrition : GAM    2
#> 189                                     Moderate acute malnutrition : MAM    2
#> 190                                       Severe acute malnutrition : SAM    2
#>          X.2      X.3      X.4      X.5      X.6      X.7      X.8      X.9
#> 1                                                                          
#> 2        ALL                      MALES                    FEMALES         
#> 3        EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 4    83.8542  81.7708  89.3750  83.7838  74.2335  91.1675  85.0000  81.8825
#> 5     9.8958   6.8750  13.5417   6.1728   4.4783  11.2761  11.0000   4.1556
#> 6     4.6875   1.7708   9.1667   6.2500   0.4878  14.5411   3.3333   1.0375
#> 7     0.5208   0.0000   1.0417   1.1494   0.0000   4.5714   0.0000   0.0000
#> 8                                                                          
#> 9                                                                          
#> 10       ALL                      MALES                    FEMALES         
#> 11       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 12   71.3073  68.9823  72.6344  70.6111  69.7582  74.2575  71.2845  69.1669
#> 13    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 14   51.0417  40.7292  63.0208  50.0000  35.9904  63.0062  53.4483  42.5538
#> 15   23.4375  19.8958  31.8750  29.2683  17.3816  36.9369  21.7391  10.8829
#> 16   21.8750  10.7292  30.7292  14.8649  10.2222  32.7222  24.5455  15.4928
#> 17    3.1250   1.2500   7.2917   6.2500   1.6512   9.6155   0.8696   0.0000
#> 18   38.5417  30.0000  46.3542 100.0000 100.0000 100.0000   0.0000   0.0000
#> 19   61.4583  53.6458  70.0000   0.0000   0.0000   0.0000 100.0000 100.0000
#> 20    2.6042   0.6250   5.5208   1.3889   0.0000   3.3300   4.3103   0.0000
#> 21   31.2500  23.4375  38.2292  55.5556  47.2164  64.4633  16.5217  10.2807
#> 22   11.4583   8.4375  14.3750  17.0732  12.5075  25.1284   7.8947   4.5217
#> 23    6.2500   3.5417  10.1042   9.7222   2.8108  15.4482   5.0000   2.6324
#> 24   49.4792  39.0625  61.5625  16.0920   5.9602  19.3393  67.0000  59.0287
#> 25    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 26   14.5833   9.1667  16.9792  14.2857   9.0290  25.6308  11.4035   4.4783
#> 27                                                                         
#> 28                                                                         
#> 29       ALL                      MALES                    FEMALES         
#> 30       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 31    2.6458   2.4365   2.7000   2.5556   2.3180   2.7144   2.6783   2.5810
#> 32    4.4792   4.2146   4.8948   4.5517   4.0456   5.0367   4.6228   4.4032
#> 33   91.1458  88.3333  93.1250  91.3043  87.9846  96.0614  91.0000  84.9337
#> 34   52.0833  41.1458  61.3542  52.7778  39.3208  60.9979  56.3636  47.6522
#> 35   56.7708  53.2292  66.5625  55.1724  43.1399  70.5616  58.1818  47.4600
#> 36    4.6875   2.8125   8.2292   2.7778   0.0000   7.1485   6.3063   2.6507
#> 37    2.6042   1.6667   5.0000   2.4691   1.2288   9.4953   0.8621   0.0000
#> 38   30.2083  26.7708  35.3125  47.5000  36.1007  56.1300  25.2174  22.0870
#> 39   40.1042  33.6458  50.9375  40.2778  28.7650  47.7609  45.2174  32.1667
#> 40    1.5625   0.5208   5.7292   0.0000   0.0000   1.0811   3.4483   0.1739
#> 41   19.2708  15.2083  27.6042  24.3243  16.9327  35.9259  22.6087  14.7241
#> 42   46.3542  42.6042  57.0833  40.2439  28.4643  57.2414  56.5217  46.7130
#> 43   95.8333  92.1875  97.8125  98.6111  91.7654  99.7701  97.3684  94.3028
#> 44                                                                         
#> 45                                                                         
#> 46       ALL                      MALES                    FEMALES         
#> 47       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 48   44.2708  39.4792  59.7917  42.6829  34.0434  54.0580  54.7826  41.3628
#> 49   40.1042  33.6458  50.9375  40.2778  28.7650  47.7609  45.2174  32.1667
#> 50    8.8542   6.9792  15.6250   5.0633   1.6367  15.8049  11.2069   4.1053
#> 51   58.3333  54.5833  67.0833  65.2174  48.5795  69.9305  66.9565  54.4592
#> 52    5.2083   3.1250   8.0208   2.5000   1.2288   9.4953   4.3478   0.6000
#> 53   60.9375  56.5625  70.9375  66.6667  48.5795  73.7250  67.8261  54.8070
#> 54   65.1042  60.9375  70.1042  65.2778  49.8963  75.8245  67.2727  56.7963
#> 55    1.5625   0.5208   5.7292   0.0000   0.0000   1.0811   3.4483   0.1739
#> 56   59.8958  53.1250  65.6250  68.5714  57.7277  78.8298  60.8333  47.9017
#> 57   63.5417  55.4167  70.1042  71.4286  59.0696  79.0768  66.0000  57.9605
#> 58   81.2500  76.8750  88.3333  81.0811  74.9600  87.7617  84.3478  79.7297
#> 59   59.8958  53.1250  65.6250  68.5714  57.7277  78.8298  60.8333  47.9017
#> 60   86.4583  81.9792  91.7708  91.2500  80.8706  95.3789  86.0870  82.0901
#> 61   36.9792  30.4167  40.5208  48.6111  40.5383  62.2875  30.6306  28.0000
#> 62   34.8958  30.4167  39.5833  48.6111  39.3656  62.2875  30.0000  23.9526
#> 63                                                                         
#> 64                                                                         
#> 65       ALL                      MALES                    FEMALES         
#> 66       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 67   77.0833  75.1042  81.2500  75.0000  69.8014  80.8101  83.3333  75.9394
#> 68   18.2292  13.8542  20.7292  21.7391  14.6528  28.7037   9.9099   7.3241
#> 69    2.6042   0.3125   3.5417   3.6585   0.2469   5.7488   2.7273   0.0000
#> 70                                                                         
#> 71                                                                         
#> 72       ALL                      MALES                    FEMALES         
#> 73       EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 74  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 75    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 76    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 77    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 78  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 79    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 80    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 81    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 82  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 83    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 84    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 85    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 86  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 87    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 88    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 89    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 90  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 91    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 92    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 93    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 94  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 95    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 96    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 97    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 98  100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
#> 99    0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 100   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 101   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 102   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 103                                                                        
#> 104                                                                        
#> 105      ALL                      MALES                    FEMALES         
#> 106      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 107  96.3542  94.2708  98.4375  94.2029  91.7540  99.7500  98.0000  94.5837
#> 108  98.9583  96.8750  99.7917  97.4684  92.9344 100.0000 100.0000  97.6427
#> 109  98.9583  96.8750  99.7917  97.4684  92.9344 100.0000 100.0000  97.6427
#> 110  96.3542  91.9792  98.9583  95.8333  91.4355 100.0000  97.2727  92.2929
#> 111  70.3125  65.4167  77.2917  74.3902  67.2574  85.0053  70.8333  62.4948
#> 112  98.9583  98.5417 100.0000  98.5714  95.8559 100.0000 100.0000 100.0000
#> 113   5.6042   5.5156   5.6906   5.5696   5.4411   5.8152   5.5913   5.5346
#> 114  96.8750  92.0833  98.9583  97.4684  92.9344 100.0000  98.0000  93.2067
#> 115   1.5625   0.0000   6.3542   0.0000   0.0000   0.0000   2.0000   0.8406
#> 116   1.0417   0.2083   3.1250   2.5316   0.0000   7.0656   0.0000   0.0000
#> 117  61.9792  47.6042  67.9167  56.2500  41.7783  72.3737  58.6207  51.4435
#> 118  11.9792   4.0625  16.3542  12.5000   9.3316  22.3742   8.7719   5.6154
#> 119                                                                        
#> 120                                                                        
#> 121      ALL                      MALES                    FEMALES         
#> 122      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 123  12.4740  11.8333  13.0271  11.7838  10.3487  12.5533  13.1810  11.8633
#> 124  52.0833  45.0000  57.5000  48.7805  32.0978  55.0192  53.0000  47.0008
#> 125  20.8333  12.9167  27.5000  17.1429  11.4691  25.9894  21.7391  18.1976
#> 126                                                                        
#> 127                                                                        
#> 128      ALL                      MALES                    FEMALES         
#> 129      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 130  45.8333  38.9583  53.2292  39.0805  29.3889  48.9222  50.9091  43.9718
#> 131  72.8261  68.7480  83.4562  67.7419  41.8926  83.1522  82.1429  70.1106
#> 132  16.0000   5.4605  32.9825  10.0000   0.0000  40.5357  15.3846   0.0000
#> 133  38.4615  13.7681  58.4000  20.0000   2.0000  58.0000  37.5000   4.6154
#> 134   5.2632   0.0000  41.4609   0.0000   0.0000   0.0000  28.5714   3.0769
#> 135  11.5385   0.0000  24.2105  28.5714   1.4286  58.0000   0.0000   0.0000
#> 136   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 137   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 138   4.1667   0.0000  14.9053   0.0000   0.0000   0.0000   0.0000   0.0000
#> 139   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 140  20.8333   2.4000  35.6000  21.4286   9.0000  55.7143   0.0000   0.0000
#> 141  89.5833  82.8125  94.1667  87.3418  80.8642  89.8378  88.6957  82.7584
#> 142  82.0809  78.5507  88.5059  74.1379  67.5696  87.0000  84.4037  78.4572
#> 143   7.4074   0.0000  18.1818   6.6667   1.0526  15.8333  10.0000   0.0000
#> 144  83.3333  54.5455  98.2353  84.6154  72.7778  93.5673  83.3333  58.0220
#> 145   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 146   5.2632   0.0000  23.6364   0.0000   0.0000  21.5278   0.0000   0.0000
#> 147   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 148   3.7037   0.0000   9.0374   0.0000   0.0000   0.0000   5.0000   0.0000
#> 149   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 150   0.0000   0.0000   4.4444   0.0000   0.0000   0.0000   0.0000   0.0000
#> 151   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
#> 152   1.5625   0.1042   6.7708   1.3889   0.0000   6.1554   3.0000   1.6970
#> 153  41.1458  36.9792  47.1875  50.7246  40.4621  55.1125  33.0000  23.0725
#> 154  30.2083  25.4167  37.1875  22.2222  17.8437  40.1467  33.9130  22.2246
#> 155                                                                        
#> 156                                                                        
#> 157      ALL                      MALES                    FEMALES         
#> 158      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 159  57.8125  48.0208  62.1875  60.8696  52.4946  72.3784  50.4348  40.8957
#> 160  43.2292  30.2083  48.6458  45.1220  37.4226  58.7104  27.8261  18.6903
#> 161  10.9375   8.1250  12.2917  21.4286   9.4093  28.9384   5.0000   0.8696
#> 162   3.1250   1.5625   4.5833   4.3478   1.5841   9.5278   0.8333   0.0000
#> 163   5.2083   2.8125   8.0208   1.3514   0.0000   6.7518   9.5652   4.9783
#> 164   0.0000   0.0000   1.0417   0.0000   0.0000   0.0000   0.0000   0.0000
#> 165   1.0417   0.6250   3.0208   3.4483   0.0000   6.7954   0.0000   0.0000
#> 166   1.0417   0.5208   2.5000   1.2500   0.0000   3.2487   0.0000   0.0000
#> 167  31.7708  28.7500  37.5000  27.8481  22.0427  43.8582  33.6364  27.3043
#> 168   1.0417   0.0000   1.9792   1.3889   0.0000   3.7496   0.0000   0.0000
#> 169                                                                        
#> 170                                                                        
#> 171      ALL                      MALES                    FEMALES         
#> 172      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 173  63.0208  57.1875  67.7083  59.4203  54.5397  69.1188  64.0351  54.9640
#> 174  69.7917  65.1042  74.4792  65.2174  61.4324  74.4828  77.5000  63.3946
#> 175  23.4375  19.5833  33.3333  22.7848  14.4286  39.8602  24.5614  16.5838
#> 176  23.4375  19.4792  33.1250  22.7848  14.4286  39.8602  23.6842  14.9838
#> 177                                                                        
#> 178                                                                        
#> 179      ALL                      MALES                    FEMALES         
#> 180      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 181   5.2083   1.7708   7.1875   3.7975   0.2299   7.9756   4.3478   1.9085
#> 182   5.7292   3.3333   7.6042   2.8986   0.0000   6.4181   6.0870   1.9252
#> 183   3.1250   1.0417   6.2500   2.2989   0.0000   5.5841   2.7027   0.1739
#> 184                                                                        
#> 185                                                                        
#> 186      ALL                      MALES                    FEMALES         
#> 187      EST      LCL      UCL      EST      LCL      UCL      EST      LCL
#> 188   3.4525   0.6222   5.0492   0.1756   0.0041   0.9667   5.9193   2.4983
#> 189   3.4421   0.5949   5.0161   0.0976   0.0041   0.9667   5.9189   2.2042
#> 190   0.0104   0.0001   0.0399   0.0000   0.0000   0.0625   0.0432   0.0001
#>         X.10
#> 1           
#> 2           
#> 3        UCL
#> 4    91.0787
#> 5    14.8609
#> 6     7.2095
#> 7     0.6897
#> 8           
#> 9           
#> 10          
#> 11       UCL
#> 12   72.7405
#> 13    0.0000
#> 14   64.2397
#> 15   28.2899
#> 16   35.5649
#> 17    6.8527
#> 18    0.0000
#> 19  100.0000
#> 20    7.2596
#> 21   19.0565
#> 22   16.5622
#> 23    7.2281
#> 24   72.6957
#> 25    0.0000
#> 26   14.3715
#> 27          
#> 28          
#> 29          
#> 30       UCL
#> 31    2.7753
#> 32    4.8745
#> 33   97.0614
#> 34   60.0759
#> 35   64.3368
#> 36   11.6000
#> 37    3.2826
#> 38   32.3736
#> 39   52.8940
#> 40    9.1067
#> 41   35.3043
#> 42   59.8333
#> 43  100.0000
#> 44          
#> 45          
#> 46          
#> 47       UCL
#> 48   56.1192
#> 49   52.8940
#> 50   18.2899
#> 51   71.4203
#> 52    9.1067
#> 53   75.2754
#> 54   73.8103
#> 55    9.1067
#> 56   70.2904
#> 57   72.3860
#> 58   91.6878
#> 59   70.2904
#> 60   95.6624
#> 61   40.7471
#> 62   39.2414
#> 63          
#> 64          
#> 65          
#> 66       UCL
#> 67   87.6747
#> 68   15.0303
#> 69    5.0000
#> 70          
#> 71          
#> 72          
#> 73       UCL
#> 74  100.0000
#> 75    0.0000
#> 76    0.0000
#> 77    0.0000
#> 78  100.0000
#> 79    0.0000
#> 80    0.0000
#> 81    0.0000
#> 82  100.0000
#> 83    0.0000
#> 84    0.0000
#> 85    0.0000
#> 86  100.0000
#> 87    0.0000
#> 88    0.0000
#> 89    0.0000
#> 90  100.0000
#> 91    0.0000
#> 92    0.0000
#> 93    0.0000
#> 94  100.0000
#> 95    0.0000
#> 96    0.0000
#> 97    0.0000
#> 98  100.0000
#> 99    0.0000
#> 100   0.0000
#> 101   0.0000
#> 102   0.0000
#> 103         
#> 104         
#> 105         
#> 106      UCL
#> 107 100.0000
#> 108 100.0000
#> 109 100.0000
#> 110  98.9710
#> 111  74.4285
#> 112 100.0000
#> 113   5.7192
#> 114  99.1594
#> 115   6.7933
#> 116   0.0000
#> 117  65.7035
#> 118  15.3217
#> 119         
#> 120         
#> 121         
#> 122      UCL
#> 123  14.3548
#> 124  59.7544
#> 125  26.9544
#> 126         
#> 127         
#> 128         
#> 129      UCL
#> 130  59.1667
#> 131  93.3293
#> 132  43.0556
#> 133  52.4444
#> 134  75.0000
#> 135   0.0000
#> 136   0.0000
#> 137   0.0000
#> 138  17.7778
#> 139   0.0000
#> 140  36.4835
#> 141  93.8963
#> 142  92.2371
#> 143  40.4396
#> 144 100.0000
#> 145   0.0000
#> 146   0.0000
#> 147   0.0000
#> 148  11.6340
#> 149   0.0000
#> 150  21.2500
#> 151   0.0000
#> 152   6.7933
#> 153  49.7513
#> 154  45.7930
#> 155         
#> 156         
#> 157         
#> 158      UCL
#> 159  59.3792
#> 160  36.6061
#> 161   9.0276
#> 162   2.9826
#> 163  17.1730
#> 164   1.5580
#> 165   0.0000
#> 166   2.7081
#> 167  42.9985
#> 168   1.3793
#> 169         
#> 170         
#> 171         
#> 172      UCL
#> 173  70.0870
#> 174  86.2894
#> 175  32.4618
#> 176  31.9400
#> 177         
#> 178         
#> 179         
#> 180      UCL
#> 181   6.9913
#> 182  11.6167
#> 183   6.5507
#> 184         
#> 185         
#> 186         
#> 187      UCL
#> 188   9.7060
#> 189   9.1825
#> 190   0.7763

Piped operation to get output an HTML report

If the preferred output is a report with combined charts and tables of results, the following piped operations can be performed:

testSVY |>
  create_op() |>
  estimate_op(w = testPSU, replicates = 9) |>
  report_op_html(
    svy = testSVY, filename = file.path(tempdir(), "ramOPreport")
  )

which results in an HTML file saved in the specified output directory that looks something like this:

Example of a RAM-OP HTML report