
Concatenate classic and PROBIT estimates into a single data.frame
Source:R/05-merge_op.R
merge_op.Rd
Concatenate classic and PROBIT estimates into a single data.frame
Value
A data.frame()
of combined classic and probit estimates.
Examples
indicators <- c(
"demo", "anthro", "food", "hunger", "adl", "disability",
"mental", "dementia", "health", "oedema", "screening", "income",
"wash", "visual", "misc"
)
classicIndicators <- indicators[indicators != "anthro"]
## Bootstrap classic
classicEstimates <- estimate_classic(
x = indicators.ALL, w = testPSU,
indicators = classicIndicators, replicates = 9
)
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
probitEstimates <- estimate_probit(
x = indicators.ALL, w = testPSU, replicates = 9
)
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
#> ✔ x has the appropriate/expected data structure
merge_op(x = classicEstimates, y = probitEstimates)
#> # A tibble: 139 × 13
#> INDICATOR GROUP LABEL TYPE EST.ALL LCL.ALL UCL.ALL EST.MALES LCL.MALES
#> <fct> <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 resp1 Survey Resp… Prop… 0.854 0.829 0.896 0.818 0.707
#> 2 resp2 Survey Resp… Prop… 0.0885 0.0604 0.127 0.0864 0.0501
#> 3 resp3 Survey Resp… Prop… 0.0417 0.0229 0.0729 0.0741 0.0157
#> 4 resp4 Survey Resp… Prop… 0.0104 0 0.0240 0.0282 0.00247
#> 5 age Demography… Mean… Mean 70.5 69.6 72.3 71.9 70.7
#> 6 ageGrp1 Demography… Self… Prop… 0 0 0 0 0
#> 7 ageGrp2 Demography… Self… Prop… 0.547 0.456 0.576 0.465 0.396
#> 8 ageGrp3 Demography… Self… Prop… 0.229 0.209 0.278 0.268 0.226
#> 9 ageGrp4 Demography… Self… Prop… 0.182 0.130 0.280 0.197 0.140
#> 10 ageGrp5 Demography… Self… Prop… 0.0417 0.0125 0.0469 0.0617 0.0274
#> # ℹ 129 more rows
#> # ℹ 4 more variables: UCL.MALES <dbl>, EST.FEMALES <dbl>, LCL.FEMALES <dbl>,
#> # UCL.FEMALES <dbl>